
277

On the Design and Implementation of the Multidimensional
CUBEStore Storage Manager

Wolfgang Lehner, Wolfgang Sporer
Department of Database Systems

Friedrich-Alexander University of Erlangen-Nuremberg
Martensstr. 3

D-91058 Erlangen, Germany
{lehner, wgsporer}@immd6.informatik.uni-erlangen.de

Tel: +49 9131 85-7800
Fax: +49 9131 85-8854

Abstract: CUBEStore is a storage manager designed within the CUBESTAR project to fit
the special needs of multidimensional applications as found in the area of Statistical and
Scientific DataBases (SSDB). Some of the goals being achieved within this project were
built-in support for multiple dimensions and good performance for range queries regard-
less of the dimensionality of the data. The general characteristics of SSDB-applications,
the derived requirements with regard to a storage management system and the specific
open architecture as well as the reference implementation of CUBEStore are described in
this paper.

1. Introduction

With the advent of “Online Analytical Processing” (OLAP, [3]) and “Data Warehousing”
as its data delivering platform, the well-known database research field of “Statistical and
Scientific Databases” (SSDB, [18]) comes to a rejuvenation. Typically, SSDBs are used to
store and retrieve satellite weather data or the numerical results of large physical experi-
ments. They mostly still stick to tables for presenting results of a query. OLAP applica-
tions show the same data access and analysis characteristics, just replacing statistical
tables by multidimensional data cubes ([19]).

In certain points, the characteristics of SSDBs differ remarkably from standard “Online
Transaction Processing” (OLTP) database applications nowadays commonly built on top
of relational database systems. Therefore, proprietary systems tailored to fit the special
needs of SSDB applications are quite likely to be found in this area. Some of the points to
be taken into regard are:
• efficient access to very large multidimensional data volumes
• only a limited amount of data is needed per request
• the physical storage structure should in some way reflect the logical, i.e. multidimen-

sional structure of the data

The overall goal of the CUBESTAR project is to build a reference system matching these
requirements. According to the ANSI/Sparc 3-Level Database Architecture ([21]), the
CUBESTAR project works on all three levels of this architecture, thus trying to maximize
usability and performance without the limitations of other projects approaching just one of
these levels.

278

On the conceptual level, the CROSS-DB data model
([12]) is used to represent raw facts and figures as
well as the basic structures supporting the data analy-
sis phase. The description of different users’ views of
the data corresponds to the external level and is per-
formed by queries formulated in the CUBEQueryLan-
guage (CQL, [1]). In general the distinction of
several application-oriented external views on the
same application-independent conceptual schema provides logical data independence.

CUBEStore, as to be described here, represents an important part of the internal level, pro-
viding CUBESTAR with adequate support for physically storing and retrieving data. The
separation of a conceptual level from an internal level provides physical data indepen-
dence, meaning that the model of the mini world is independent from its implementation.
The most important means to make CUBEStore more efficient for SSDBs than standard
database architectures are distribution and replication. In some way, CUBESTAR can be
viewed as some kind of MiddleWare ([2]), providing efficient access to aggregated infor-
mation based on large data volumes distributed over different servers and over different
storage media. Thus, from an user’s point of view, CUBESTAR implements a fast ‘Informa-
tion Everywhere’ service, with CUBEStore as the technical basis for data distribution and
replication.

Referring more specifically to CUBEStore, the next section covering related work presents
some other approaches of how to overcome the shortcomings of traditional database sys-
tems for multidimensional databases. The third and fourth section describe the characteris-
tics and the requirements of multidimensional data respectively in more detail.
Afterwards, the design of CUBEStore is presented, and finally, interesting features of the
implementation are highlighted. The paper concludes with a short summary.

2. Related Work

In general, two streams of implementing multidimensional data models can be distin-
guished in scientific literature as well as in commercial products ([4]). The ‘relational’-
OLAP approach (ROLAP) transforms each query formulated in the multidimensional
view into an SQL-statement, to be processed on a relational database engine. On the other
side, the ‘multidimensional’-OLAP approach (MOLAP) implements the multidimensional
model directly on the physical layer. Since we (and probably the majority of the database
research community) believe that there is no unique winner in this discussion, both direc-
tions should be supported by a database system providing efficient data access for OnLine
Analytical Processing. Hence, CUBEStore is designed to be an open storage management
system, capable of using relational and multidimensional drivers. As our outline of the
basic CUBEStore architecture especially emphasizes the pure multidimensional way, we
are now going to have a short look at other projects dealing with open storage manage-
ment in general and multidimensional storage techniques in detail.

Supporting database systems by a sophisticated storage subsystem is a long story in data-
base research ([20]). Furthermore, much work was done by Sarawagi, incorporating ter-
tiary storage media directly into the database system ([17]). A different, indirect way of

conceptual
schema

internal
schemes

external
schemes

Figure 1. ANSI/Sparc 3-Level
DB Architecture

279

extending the capabilities of existing database systems is described in [14]. A virtual disk
storage manager called Daisy is offered, operating similar to a virtual memory manager by
transparently ‘swapping’ data blocks between different storage media, e.g. hard disk and
tape drives. This is an interesting method to enhance existing systems, but one drawback
of its transparency is the lack of integration into the database system, making it more diffi-
cult to control the activities of the storage manager.

Addressing the problem of multidimensional storage techniques, we will sketch two dif-
ferent ways to tackle this problem. The NASA’s CommonDataFormat (CDF) and its
extension NetCDF [6] are similar to CUBESTAR in the fact that they stand for a new, self-
contained system adopted to the needs of multidimensional data as good as possible. But
in contrast to the aim of the CUBESTAR project to build a full-featured database system as
explained before, CDF mainly consists of a combination of the I/O-library and utilities to
use this library. NetCDF extends the CDF data format to become more flexible and
machine-independent. Thus, NetCDF might become a single module of the CUBEStore
system in the future.

Relational database vendors are aware of the need to provide multidimensional data
access. Oracle for example adds a new data type called HHCODE to their relational data-
base system ([16]). This way offers the ability to integrate relational and multidimensional
data in one system, a fact that might be outstanding to many possible users, as it allows a
soft migration. On the other hand, it will be hard to adopt such a system fully to the needs
of multidimensional applications. For instance, with an HHCODE-type field, it is not pos-
sible to query for exact data, only ranges can be requested, so an exact reproduction of the
original values is rather hard. In general, adding multidimensional extensions to relational
database systems (like the DataBlade technique of the Informix Universal Server [9])
might solve some users’ needs rather comfortable, but it seems not appropriate for build-
ing a fully multidimensional application.

3. CUBEStore-Characteristics

This section tries to make the reader more familiar with the characteristics of SSDBs in
general and some of the consequences for a storage management system. Afterwards, a
model for redundant storage of information will be sketched.

3.1. Sample Scenario

One of the roots of the CUBESTAR project lays in a series of projects with our industrial
partner, the worldwide operating retail research company “GfK”. Their task can be shortly
characterized by the following analysis steps: in a first phase, sales figures of single arti-
cles in single shops (mostly from Point-of-Sales systems) are gathered, classified and peri-
odically added to a common raw database. Based on these data, typical statistical analyses
like distributions, top-n calculations, etc. are performed. In general, the GfK-database is a
good example for the basic properties determining the character of SSDBs [10]:
• multidimensional data structure
• data access according to dimensional structures
• very large amounts of data
• periodic bulk updates with an append-only semantic for the vast majority of data

280

For example, the left side of figure 2 illustrates some sample sales figures in a two-dimen-
sional context. The hierarchically organized dimensional structures of the dimensions
“Products” and “Shops” prescribe data access during the analysis process. Another inter-
esting feature of multidimensional data which can also be seen in this example is the fact
that data density is often very low, i.e. most of the possible multidimensional values are
not existent. In our example densities between 4% and 20% were observed.

The right side of figure 2 shows two possible derivations: the upper one holds summarized
values according to different product families subsumed by the notion of ‘Video’; the
lower one reflects the result of an aggregation process in the geographic direction. The raw
database has large data volumes (10 GBytes in total for sales figures for German shops in
a single gathering period for the current retail research scenario). Hence, for answering
queries efficiently, data has to be aggregated according to different dimensions and at
many different levels of detail, or granularity, even differing between the dimensions
within one query. Typically, sales figures like Camcorder versus VCRs are requested not
for single shops, but for instance summed up for the whole of Germany. On the other
hand, the area manager of a retail chain running many stores might be interested in how
his shops in Munich compare to those in Berlin.

Therefore, the system has to provide additional mechanisms to be able to cope with such
requests. The problem becomes even worse, as all the data is kept for at least two years
and used for time-oriented sequence and long-term analyses. Thus, time as a third dimen-
sion, missing in figure 2, must be added in the model and the data volumes must be multi-
plied by a corresponding factor (24 for two years on a monthly reporting frequency).

3.2. A Redundancy Model supporting SSDB-Applications

The append-only characteristic of SSDB-applications leads to the natural conclusion to
use redundancy as a means to make such database systems faster. A project with GfK,
published in [11], showed that an impressive speedup can be gained by using aggregated
data instead of raw sales figures, and if the basis for those aggregated data stays rather sta-
ble, they can be reused quite often.

Figure 2. Sample Sales Figures of Video Equipment in Germany

Shop 1

Shop 2

Shop 3

UX2 T3 UX4 X2

VCR

Video

Shop 4

Camcorder

12

8

11 7 15 ...

15 NULL NULL

1

32

3NULL

1922

1

...

...

...

Shop 1

Shop 2

Shop 3

VCR

Shop 4

Camcorder

23

23

39

NULL

14

941

1

UX2 T3 UX4 X2

Munich

Berlin

20

23

26 7 15 ...

19 5 4 ...

Products

Shops

281

From a more general point of view, redundancy in the context of SSDB can be seen as re-
presenting one logical object x by n physical objects xi, (i=1,...,n), with n being the num-
ber of physical representations. Each physical object xi is generated by applying a function
xi = fi(x) to a logical object. According to the applied function f, two different kinds of
redundancy can be distinguished:
• Horizontal Redundancy (= Replication):

Using the identity function xi = f(x) = id(x), the physical object corresponds to the log-
ical object. This case, with two or more physical objects1, represents the classical way
of replicating data to increase local availability and local access performance of
remote data.

• Vertical Redundancy (= Aggregation):
In this case, f corresponds to an aggregation function like xi = SUM(x) or xi = AVG(x).
The derived physical objects can be seen as persistent results of a computation on a
different object, probably of finer structure. Again, this is done mainly for performance
reasons, to prevent often needed data to be recalculated from mostly unchanged raw
data.

4. Requirements for an SSDB-Storage System

Consequently, three major requirements were identified for CUBEStore, influenced by the
characteristics described above and the use of redundancy to improve query performance:
• being able to support different storage media
• being freely configurable, especially what, where and how data is stored
• reflecting the multidimensional data structure physically

The reasons for integrating different ways of storing data are now described, followed by
an explanation of the need for a flexible way to configure a multidimensional storage man-
ager, including the ability to reflect the multidimensional data structure physically.

4.1. Support for Different Storage Media

As SSDB applications are often used for several years, sometimes even more than a
decade, the amount of data to be administered by CUBEStore can easily become magni-
tudes larger than other databases and reach several terabytes. Obviously, a limitation to
magnetic hard disks as single mass storage medium is rather inappropriate here. Accord-
ingly, the open concept of CUBEStore supports, by means of its abstract, media-indepen-
dent interface, almost any storage medium, thus giving the user the possibility to decide
which one fits his needs best. Organized in a hierarchic pyramid, the well-known principle
of using cheaper but slower media for less often needed data can thereby be applied
(figure 3). This includes, of course, the use of network drivers for horizontal redundancy.

Nevertheless, at least from within the system it should be possible to query the costs of
accessing data on different storage media. This will enable the query optimizer to decide
which volume to choose, if different options are available. In general, these costs can be

1. Without going in to much detail, it must be noted that at least one xi = id(x) must be present in the
system

282

divided into media access costs and transfer costs. The former describe the costs for gain-
ing access to a CD-ROM in a juke box, for instance, independent of how much data is
needed. The latter tells the system about the actual transfer costs, normally of course
dependent on the amount of data to be transferred. There are several other interesting char-
acteristics about mass storage media that can be taken into regard. In general, the system
needs to classify its media, and as a consequence of the former paragraph, this information
has to be maintained separately from the original data in the so-called Meta Information
System. It must be possible to decide which media to use before actually accessing the
chosen medium.

4.2. Flexible Configuration

In addition to the claimed support for different storage media, their usage should be fully
configurable, to adopt a system to the changing needs of its users. A global Allocation
Manager, supported by local Allocation Agents might then move older or less often used
data to a cheaper medium according to certain preset parameters, maybe on a different
site. Their tasks include to decide what and how many physical data partitions should be
used for one logical data partition. For instance, this can be determined according to
access patterns, given priorities or granularities. Another part of their work is, as said
before, to decide which sites should replicate frequently used data. Figure [4] shows what
such a configuration could be like. It includes an example for horizontal replication, or
duplication of data on a different site and for vertical replication or aggregating data.

Not only needs the system to be open to different types of storage media, equally impor-
tant is its capability to support different strategies and algorithms transparently, for exam-
ple with regard to the way the multidimensional data is linearized and compressed. In
particular the chosen sequential ordering is a key to improve or slow down query perfor-

Figure 3. Data Distribution within the Storage Hierarchy

Tapes

(reporting period)
TIME

VERTICAL
REPLICATED
DATA

MO-Disks Hard Disks

historic
data

current
data

Allocation
Agent

Site 1

Figure 4. Allocation of Mass Data at Different Sites and on Different Storage Media

Allocation
Manager

Allocation
Agent

network

horizontal
replication

Site 1

Allocation
Agent

Site 3

vertical replication

283

mance. Therefore, the physical representation of the multidimensional data must be cho-
sen very carefully and it should be possible to adopt it to the needs of different
applications. Furthermore, as a consequence of the low data density, intelligent compres-
sion techniques are a real necessity for efficient data storage.

To put it into a nutshell, CUBEStore provides, as a result of these requirements, an open,
configurable data storage system for handling large volumes of multidimensional data
with a potential high sparsity. Support for horizontal and vertical replication of data with
regard to geographic distribution as well as distribution over inhomogeneous storage
media, makes CUBEStore the ideal basic technique for a database management system fit-
ting SSDB-applications’ needs.

5. Design

Having explained the requirements that determined the design of CUBEStore, first of all
the CUBEObjects as the core entities of CUBEStore are described. This is followed by a
basic scheme for the possible division of work between the drivers within a CUBEObject.
Finally, two possible configurations are presented. Some of the ideas used in this approach
can be found in [5], [8], [6] and [16].

5.1. The CUBEObjects

According to the requirements described before, design and architecture of the CUBEOb-
jects, the most important components of CUBEStore, are presented in this section. A
CUBEObject is a logical representation of a data partition. Figure 5 illustrates how its main
parts work together:
• CUBEDrv: driver inside a CUBEObject
• CUBEData: data objects for these drivers
• CUBEIniFiles: configuration files of the CUBEObjects

A CUBEObject is something like a black box offering a well-defined interface to its users
to store and retrieve data. The data exchanged between them and a CUBEObject or its
CUBEDrv is called CUBEData. The CUBEDrv form the core of a CUBEObject, they deter-
mine what and how it performs. A driver queue contains a list of drivers according to the
configuration found in the CUBEIniFile belonging to that object. Getting CUBEData in the
standard format described later, a CUBEObjects involves its first driver asking him to pro-
cess the CUBEData. The CUBEDrv transforms the CUBEData according to the requirements
of the next driver in the queue, and this goes on until the last one succeeds in storing
CUBEData, or in retrieving the requested data from the storage media and handling the
CUBEData back upwards the driver queue.

Figure 5. Architecture of a CUBEObject and its components

CUBEData

CubeIniFile
driver queue

mass
storage
media

CubeDrv CubeDrv CubeDrv

CUBEObject

284

The division into several CUBEDrv ensures modularization and reusability. A new com-
pression technique, for instance, can easily be added by implementing just a compressing
driver and changing the CUBEIniFile as to load this driver to its place in the driver queue.
Or, to use the recovery capabilities of a standard database system, only a simple driver
transforming CUBEData into an SQL query is necessary. The same argument holds for net-
work drivers in a distributed system or, e.g. for dummy drivers to overcome the limitation
to one CUBEObject, thus enabling clustering of several logical data partitions data into one
physical partition.

5.2. A Basic Scheme

The first step was to develop a basic scheme on how to divide work between the different
drivers. According to this scheme, the task of storing multidimensional data partitions on a
storage medium consists of dividing the partitions into a number of data blocks. Secondly,
a format for storing (and compressing) data within these blocks has to be found. And
finally, the data blocks have to be written to or read from the medium. In other words, we
have got three different kinds of drivers (figure 6):
• a block directory driver responsible for splitting the partition into blocks
• a block access driver determining the storage format within these blocks
• a block driver reading and writing blocks to an external medium

One drawback of splitting a data partition into several blocks is the fact that additional
administration has to be done by the block directory driver. On the other hand, to maintain
a minimum of flexibility, in particular with respect to write performance, e.g. when adding
or correcting some data, some kind of division is needed anyway.

5.3. Two Configurations

Using the basic scheme of the last section, two possible ways to interpret this scheme are
described now. The first aims at using storage media of a well-known fixed block size,
whereas the second one is more appropriate to devices working with sequential access.
Finally, some remarks are made about using tape drives.

5.3.1. Storage Media with Fixed Block Size

This configuration is the first choice when storing data on normal hard disks. This implies
a fixed block size and random access to all blocks. It is now explained using figure 7:

To start at the bottom of the driver queue, the task of the block driver is rather simple.
Block number and fixed block size enable it to find the requested block quite easily. The
same holds for replacing one block with another or adding new blocks.

Figure 6. A Basic Scheme for Configuring a CUBEObjects

CUBE-

block directory driver

block driver

block access driver

I/O-library of the operation system

Object

285

The block access driver is responsible for compressing multidimensional data into a raw
data block of given size. This implies that there might be some space left, or that two raw
blocks might be needed.

The most complex driver in this configuration is the block directory driver, working on top
of the block access driver with blocks of variable size. Therefore, further directory infor-
mation is necessary to divide the data partition as good as possible and to determine the
raw data block number quickly. On the other hand, removing the block access driver, thus
enabling the block directory driver to use fixed size blocks as well cannot be a solution
with regard to the low data density mentioned earlier.

5.3.2. Storage Media with Sequential Access

If, in contrast to the former section, the block size of the storage medium cannot be fixed
in advance, this configuration might be a replacement. It uses the stream paradigm, view-
ing the medium as a single stream without bigger units of access. Again, it is explained
using figure 7:

In this case, the data partition can be divided according to a standard mapping into fixed
size blocks, resulting in a rather simple block directory driver. Now the block access driver
gets blocks of a fixed size and compresses them as good as possible, resulting in variable
sized blocks. Consequently, the block driver is becoming slightly more complex, as it has
to maintain information about addresses and sizes of the raw data blocks stored on the
storage medium. Therefore, this model is not appropriate if blocks are often moved or
change their size.

As tape drives are often used in juke boxes or something similar, long access times are
typically for this medium. Therefore, data on tapes are often compressed once more as a
whole, as the time for doing so is rather short compared to access time. This can easily be
done by adding another driver at the end of the driver queue and hence no extra configura-
tion is needed for tape drives.

mass storageAdr354 Adr6965Adr5341

Figure 7. Two Sample Driver Configurations for Different Storage Media

#35
raw data blocks

multidimensional
data blocks

multidimensional
data partition

#57 #99 Adr354 Adr6965Adr5341

storage media with
fixed block size

storage media with
sequential access

split

store

compress

286

6. Implementation

Following the first of the two possible configurations for block devices with random
access, the implementation of a prototype is now described. Again, the requirements are
presented first. Thereafter, the implementation of a CUBEObject is explained. MemCubes,
the means of exchanging data with a CUBEObject, get a section of their own, followed by a
short overview over the different drivers of this implementation.

6.1. Analysis and Requirements

The standard requirements for modern software like flexibility, portability, extensibility
and reusability must be inherent properties of an open system like CUBEStore, capable of
adopting to different and changing needs. Nevertheless, the overall performance goal of
being faster than standard database systems has to be reached, as this is the key factor for
its existence. In addition to this, the traditional solution of using more or faster hardware
might be slightly harder with data volumes reaching several terabytes, as said before.
Hence, the C++ programming language has been chosen for the implementation. Its
object-oriented features offer almost everything necessary for modern program design.
Static type checking and nothing like a runtime garbage collection enable performance.
Moreover, the availability on almost all modern computer architectures is the basis for
portability.

The relatively clear distinction between the production and query phase in the lifetime of
multidimensional SSDB data leads to the decision to look at fast read-only access as the
more important feature. A lot of emphasis was put on ensuring good read performance
regardless to the requested dimensions. This implies that a traditional primary key linear-
ization could not be used. The implementation was simplified by the restriction to numeri-
cal data, leaving coding and decoding to a separate module. The units administrated by
CUBEStore are data partitions. Dividing and joining these units is the task of the already
mentioned Allocation Manager. As the query optimizer can be multithreaded, the
CUBEStore code has to be reentrant, but not necessarily multithreaded itself.

Error handling, at least for unexpected errors, is done almost completely by throwing
exceptions, hierarchically organized and named by a unique combination of major and
minor error number. For handling standard tasks, the class library GNU libg++ was used.

6.2. The CUBEObjects

As said before, a CUBEObject is the logical representation of a CUBEStore data partition.
Data can be accessed only if the requested CUBEObject has been opened before. This is
done according to the description in the CUBEIniFile, so the name of a CUBEIniFile identi-
fies a CUBEObject. It also serves as a simple locking mechanism. A more sophisticated
name and access administration is to be implemented in future versions of CUBEStore. On
the other hand, file system methods enable e.g. the transparent use of network devices.
Each CUBEDrv to be loaded for a CUBEObject has its own paragraph in the driver section
of the CUBEIniFile, with the content being dependent on the driver. The cost section in the
CUBEIniFile describes access and transfer costs as explained at the beginning of the design
section.

287

To prevent the CUBEObjects from having to know the type of each CUBEDrv it uses, thus
making it impossible to use drivers written after the compilation of a CUBEStore applica-
tion, the drivers are generated by a separate, global or local CUBEDrvFactory with a stan-
dard interface for all drivers. As a result, only this driver factory needs to be updated if
new driver classes are developed. Accessing data in a CUBEObject is done by two basic
methods, Read and Write. They transfer data to and from CUBEObjects in the MemCube
format described later. Actually, as shown above, they just order the first driver in the
queue of the CUBEDrv in a CUBEObject to start working.

Bool Read(MemCubeData<T>& cube_data) { Bool Write(MemCubeData<T>& cube_data) {
 return (drv_queue.First())->Read(cube_data); return (drv_queue.First())->Write(cube_data);
} }

Data is held in main memory using the multidimensional MemCube class. Speaking more
exactly, the MemCube module contains a group of classes: Firstly, there is the class
CUBEIndex describing a multidimensional point by its coordinates. Two points form a con-
vex ScanRegion. The class MemCubeContainer is responsible for storing data in a format
similar to C-arrays. The MemCube class itself offers a comfortable interface to access data
in a multidimensional way, using the three helper classes just mentioned. Among others, it
allows to compare, replace or resize MemCubes as a whole.

6.3. The Drivers

This section corresponds to the largest portion of the implementation effort, the CUBEDrv.
Based on the configuration for random access block devices, a variety of drivers was
developed. Their hierarchical structure is shown in figure 8. Corresponding to each layer
of the basic scheme explained in the design section, there is a base class, containing an
abstract interface definition of the service offered by this layer: BlockDirDrv, BlockAccess-
Drv and BlockDrv.

6.3.1. The Block Layer

To start bottom-up, the block layer is the most low-level layer providing others drivers
with the capability to read and write a raw data block of a fixed size as specified in Fixed-
SizeBlockDrv. The twins SyscallBlockDrv and StreamBlockDrv perform the task of transfer-
ring data to and from disk, currently using system calls or C++ streams. Management of

Figure 8. Hierarchy of Driver Classes

CubeDrv

BlockDirDrv Block-
AccessDrv

BlockDrv

FixedSize-
BlockDrv

GridDrv MemCube-
AccessDrv

Header-
AccessDrv

Buffer-
BlockDrv

Single-
BlockDrv

Multi-
BlockDrv

Tupel-
AccessDrv

Stream-
BlockDrv

Syscall-
BlockDrv

288

the dynamic main memory used for the blocks read is done in three different ways by
MultiBlockDrv, SingleBlockDrv and BufferBlockDrv. The first one does almost no optimiza-
tion, the second one tries to reuse memory as far as possible, whereas the third one serves
as a front end to a global system buffer implemented in a separate module. Thus, the Buff-
erBlockDrv demonstrates of how to overcome the borders of a CUBEObject, useful e.g. for
implementing a storage format clustering several logical partitions into one physical.

Their base class is, as shown by the following short code extract, only given as a template.
By using this enhanced mechanism, it became possible to unify the use of two different

-drivers with three different dynamic memory management drivers in quite an elegant
way:

template <class T>
class MultiBlockDrv : public T
{

public:
MultiBlockDrv(CubeObject* cubeP, const int size, const String& file_name, const Mode mode=OPEN)

: T(cubeP, size, file_name, mode) {}
}

6.3.2. The BlockAccess Layer

In this configuration, it is the task of the block access layer to ensure that the multidimen-
sional data are stored in blocks of fixed size, and as a consequence, the block access layer
determines the format within these blocks. As it can be seen in figure 8, there are two
implementations of block access drivers, namely HeaderAccessDrv and TupelAccessDrv.
The latter stores a multidimensional value just by adding its coordinates. Even this simple
format incorporates a compression of data, as long as the data density is lower than

 with n being the number of dimensions. Changing data, including adding or
deleting values, is rather easy with this format.

A more sophisticated format is implemented in the HeaderAccessDrv: This driver uses the
SingleCountHeader method according to [7]. With this method, one distinct value can be
removed from an array, here the NULL standing for ’data not available’. To do this, a
header noticing the distance between non-NULL values is calculated. Standard C linear-
ization is used to create the array needed for compression out of the multidimensional
data, so this format is not as stable to operations resizing the multidimensional data block.
On the other hand side, since no space is needed for unavailable data, resize operations
should not be necessary too often, an advantage of this format over alternative methods
like a bitmap header.

6.3.3. The Directory Layer

The most sophisticated driver in this model is the block directory driver, whose task is to
split the multidimensional partitions into smaller blocks. To fulfill the requirement of
being rather independent to the dimension used for access, the grid file format originally
proposed in [15] has been used. On average, its performance over all dimensions is quite
good, although a method using the primary key for linearizing might be better with respect
to this special dimension. An additional benefit of this format is its local character, with

I/O

1 1 n+()⁄

289

only limited changes after adding or deleting data. Furthermore, its open character makes
it an ideal partner for different block access drivers.

A grid directory consists of two different parts: A grid scale for each dimension and a mul-
tidimensional grid array. The latter reveals the data block numbers where the requested
data can be found, and the scales indicate the upper and lower bounds of the data con-
tained in a block. Using the example given in figure 9, it can be seen that all values with
coordinates between 13 and 21 in dimension 1 and between 66 and 81 in dimension 2 are
contained in block number 27.

Consequently, especially range queries asking for data within some upper and lower
bounds, quite important in multidimensional applications, can be answered straightfor-
ward.

The implementation of the grid directory is divided into two classes, a driver class and a
directory administration class. Furthermore, the dimension chosen for splitting if the
directory has to be extended can be determined according to different strategies like for
example round-robin, fixed or toggle, therefore allowing to distinguish between more
often needed dimensions with higher granularity scales and less often needed dimensions
with lower granularity scales.

7. Summary

Basically, the development of the CUBEStore storage manager included two big tasks:
Firstly, a design flexible enough to fit the needs of different SSDB applications had to be
developed. This design was presented in section four. To prevent the description from
becoming too abstract, two possible ways of realizing such a configuration were added.
Nevertheless, further work in this area, especially in defining a more sophisticated parti-
tion administration than the basic CUBEIniFile mechanism might be helpful, but has to be
done in close connection with the development of the CUBESTAR run time system ([13]).

The second part was to show, in the implementation section, that this design could be real-
ized. As this implementation was only a prototype, several interesting concepts could not
be realized. In this context, a completely relational database interface in addition to the
special purpose design presented here might be useful.

Despite these remarks, the design and implementation of CUBEStore, a multidimensional
storage manager, has been described, which was developed with respect to the needs of
SSDB applications. CUBEStore offers a useful basis for further developments in this area.

Scale 2
Scale 1

Grid-Array

Figure 9. Sample Grid Directory

11 62572113 101

#9 #54#87#16#4

#31 #54#76#65#27

37

66

81

290

References

[1] Bauer, A.; Lehner, W.: The Cube-Query-Language for Multidimensional Statistical
and Scientific Database Systems, in: 5th International Conference on Database
Systems For Advanced Applications (DASFAA’97, Melbourne, Australia,
April 1-4, 1997), pp. 263-272

[2] Bernstein, P.A.: Middleware, in: Communications of the ACM, 39(1996)2,
pp. 86-98

[3] Codd, E.F.; Codd, S.B.; Salley, C.T.: Providing OLAP (On-line Analytical
Processing) to User Analysts: An IT Mandate, White Paper, Arbor Software
Corporation, 1993

[4] Colliat, G.: OLAP, Relational, and Multidimensional Database Systems, in:
SIGMOD Record, 25(1996)3, pp. 64-69

[5] Cabrera, L.-F.; Steiner, S.; Penner, M.; Rees, R.; Hineman, W.: ASDM: A Multi-
Platform, Scalable, Backup and Archive Mass Storage System, Research Report
RJ 9936, IBM Almaden Research Center, San Jose, CA, 1995

[6] Davis, G.; Rew, R.: NetCDF: An Interface for Scientific Data Access, in: IEEE
Computer Graphics and Applications, 1990, pp. 76-82

[7] Eggers, S. J.; Olken, F.; Shoshani, A.: A Compression Technique for Large
Statistical Databases, in: 7th International Conference on Very Large Data Bases
(VLDB’81, Cannes, France, 1981), pp. 424-434

[8] Fortner, B.: The Data Handbook, Springer Verlag, New York, 1995

[9] N.N.: Informix Universal Server, Product Information, Informix Corp.,
(http://www.informix.com/), 1997

[10] Lehner, W.; Ruf, T.; Teschke, M.: Data Management in Scientific Computing: A
Study in Market Research, in: International Conference on Applications of
Databases (ADB’95, Santa Clara, California, Dec. 13-15, 1995), pp. 31-35

[11] Lehner, W.; Ruf, T.; Teschke, M.: Improving Query Response Time in Scientific
Databases using Data Aggregation - A Case Study, in: 7th International
Conference and Workshop on Database and Expert Systems Applications
(DEXA’96, Zürich, Switzerland, Sept. 9-13, 1996), pp. 201-206

[12] Lehner, W.; Ruf, T.; Teschke, M.: CROSS-DB: A Feature-extended multi-
dimensional Data Model for Statistical and Scientific Databases, in: 5th
International Conference on Information and Knowledge Management,
(CIKM’96, Rockville, Maryland, Nov. 12-16, 1996), pp. 253-260

[13] Lehner, W.; Teschke, M.: On the Architecture of a Multidimensional Database
System for ‘Decision Support’ Applications, Technical Report TR-97-132,
University of Erlangen-Nuremberg, Erlangen, 1997 (in German)

291

[14] Menon, J.; Treiber, K.: Daisy: Virtual Disk Hierarchical Storage Manager,
Research Report RJ 10075, IBM Almaden Research Center, San Jose, CA, 1997

[15] Nievergelt, J.; Hinterberger, H.; Sevcik, K.C.: The Grid File: An Adaptable,
Symmetric Multikey File Structure, in: ACM Transactions on Database Systems
9(1984)1, pp. 38-71

[16] N.N.: Oracle Spatial Cadridge, Product Information, Oracle Corp.,
(http://www.oracle.com/st/cartridges/spatial/), 1997

[17] Sarawagi, S.: Query Processing in Tertiary Memory Databases, in: 21th
International Conference on Very Large Data Bases (VLDB’95, Zurich,
Switzerland, Sept. 11-15, 1995), pp. 585-596

[18] Shoshani, A.: Statistical Databases: Characteristics, Problems, and Some
Solutions, in: 8th International Conference on Very Large Data Bases (VLDB’82,
Mexico City, Mexico, Sept. 8-10, 1982), pp. 208-222

[19] Shoshani, A.: OLAP and Statistical Databases: Similarities and Differences, in:
16th Symposium on Principles of Database Systems (PODS’97, Tuscon, Arizona,
May 12-14, 1997), pp. 185-196

[20] Stonebraker, M.: The Design of the POSTGRES Storage System, in: 13th
International Conference on Very Large Data Bases (Brighton, England, Sept. 1-4,
1987), pp. 289-300

[21] Tsichritzis, D.C.; Klug, A.: The ANSI/X3/SPARC DBMS framework report of the
study group on database management systems, Information Systems 3(1978)3,
pp. 173-191

292

